half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))
↳ QTRS
↳ DependencyPairsProof
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))
LOG1(s1(x)) -> S1(log1(half1(s1(x))))
LOG1(s1(x)) -> LOG1(half1(s1(x)))
HALF1(s1(s1(x))) -> S1(half1(x))
LOG1(s1(x)) -> HALF1(s1(x))
S1(log1(0)) -> S1(0)
HALF1(s1(s1(x))) -> HALF1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
LOG1(s1(x)) -> S1(log1(half1(s1(x))))
LOG1(s1(x)) -> LOG1(half1(s1(x)))
HALF1(s1(s1(x))) -> S1(half1(x))
LOG1(s1(x)) -> HALF1(s1(x))
S1(log1(0)) -> S1(0)
HALF1(s1(s1(x))) -> HALF1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
HALF1(s1(s1(x))) -> HALF1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
HALF1(s1(s1(x))) -> HALF1(x)
POL( HALF1(x1) ) = max{0, x1 - 3}
POL( s1(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
LOG1(s1(x)) -> LOG1(half1(s1(x)))
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG1(s1(x)) -> LOG1(half1(s1(x)))
POL( LOG1(x1) ) = max{0, x1 - 2}
POL( s1(x1) ) = x1 + 3
POL( half1(x1) ) = max{0, x1 - 3}
POL( 0 ) = 0
half1(0) -> 0
s1(log1(0)) -> s1(0)
half1(s1(s1(x))) -> s1(half1(x))
half1(s1(0)) -> 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
s1(log1(0)) -> s1(0)
log1(s1(x)) -> s1(log1(half1(s1(x))))